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Oscillatory flow of droplets in capillary tubes.
Part 2. Constricted tubes
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(Received 25 June 1999 and in revised form 29 June 2000)

The motion of fluid droplets in constricted capillary tubes is investigated for flows
subject to the combined action of a mean pressure gradient and an oscillatory
body force. Numerical computations are employed to determine the effect of the
oscillatory forcing on the mean flow rate and the mean droplet velocity. In the
absence of oscillatory forcing, a critical pressure gradient for droplet propagation
exists, below which droplets become plugged in the narrow constrictions of the tube.
For mean pressure gradients below this threshold, oscillatory forcing is shown to be
an effective means for unplugging the constrictions and remobilizing the droplets.
For this remobilization process to occur, the oscillatory forcing level must exceed a
specified value, and the oscillatory frequency must remain below a critical frequency.
Quasi-steady models are shown to give effective predictions of the unsteady dynamics
over a wide range of conditions.

1. Introduction
In Part 1 (Graham & Higdon 2000) of this paper we discussed the use of acoustic

stimulation to increase the efficiency of secondary oil recovery operations. We studied
droplet motion in straight capillary tubes and showed that acoustic stimulation leads
to increased droplet deformation which produces significant increases in the flow rates
of both the continuous and dispersed phases. The goal of the present paper is to
study droplet flow in a constricted capillary tube to determine the effects of acoustic
stimulation on a more realistic model of porous media. The essential feature of this
geometry is that significant droplet deformation is required for the droplets to pass
through the narrow constrictions. Owing to these constrictions, a minimum forcing
level exists below which pore plugging occurs, and the flow rate of both phases
approaches zero. A major goal of this paper is to assess the effectiveness of acoustic
stimulation in overcoming the pore plugging and enhancing the net transport of the
droplet phase.

A number of previous studies have examined the motion of liquid droplets through
constricted capillary tubes. In an experimental investigation, Olbricht & Leal (1983)
measured the droplet shapes and the extra pressure drop ∆P+ for a droplet under
conditions of constant volume flow rate. They showed that ∆P+ varies significantly
with drop position along the tube, and found that large, high capillary number droplets
may experience elongation and breakup. Martinez & Udell (1989) analysed this
problem using numerical simulations and confirmed the strong position dependence
of ∆P+. They found that high capillary number flows exhibited pronounced droplet
elongation similar to that observed by Olbricht & Leal. Borhan & Hemmat (1997)
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Figure 1. Schematic of a constricted capillary tube.

also studied constricted capillary flows, focusing on small drops and evaluating the
effects of the capillary geometry (wave amplitude) on ∆P+.

While the studies above considered a constant volume flow rate, the complementary
problem involves a time-dependent flow rate associated with a constant pressure
gradient. This problem may be more realistic, because the interconnected nature of
real porous media yields flows which are closer to constant pressure gradient than
to constant flow rate. Also, this formulation includes the possibility of pore plugging
when the imposed pressure gradient is insufficient to force the droplet through the
narrowest part of a constriction. Leyrat-Maurin & Barthes-Biesel (1994) studied
the flow of a single, liquid-filled capsule moving through a hyperbolic constriction
subject to a constant pressure gradient and demonstrated pore plugging below a
critical threshold. Hemmat & Borhan (1996) studied the analogous problem for a
fluid droplet in a buoyancy-driven flow, determined the velocity of the droplet as
a function of Bond number and predicted the critical conditions for droplet breakup.

While the bulk of the research has been restricted to viscous flows, Gauglitz &
Radke (1989) considered the flow of a gas bubble through a constriction in the
presence of inertial forces. These authors found that viscous flows lead to a slow
and steady motion of the bubble through the constriction, while flows dominated by
inertia lead to an impulsive motion. For a certain range of parameters, snap-off may
occur, leading to bubble breakup and foam generation. In a related study, Tsai &
Miksis (1994) showed that snap-off may occur even in Stokes flow if the capillary
number is sufficiently small.

On reviewing the literature for flow through constricted capillary tubes, we found
no research on the effect of oscillatory forcing on the motion of dispersed fluid
droplets. In our investigation of this problem, our goal is to quantify the effect of
oscillatory forces on the mean flow rate of both the bulk fluid and droplet phases.
We seek to elucidate the fundamental physical mechanisms and thereby to provide a
basis for evaluating the relevance of acoustic stimulation for enhanced transport in
secondary oil recovery.

2. Problem formulation
We consider the flow of fluid droplets through a periodic constricted channel of

sinusoidal profile (figure 1) specified by

r = (α+ h) + α sin (kz − π/2), (2.1)

where k = 2π/L. The governing equations for a Newtonian fluid are the Navier–
Stokes equations and the continuity equation. In Part 1, we specified the governing
equations and the boundary conditions appropriate for droplet flow in capillary tubes.
We showed that acoustic stimulation is equivalent to an oscillatory body force, while
a constant pressure gradient is equivalent to a constant body force. In Part 1 we
examined two temporal forcing functions; however in this paper we restrict our
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attention to sinusoidal forcing functions with the body force specified by

bz = Go + Gω sin (2πt/τ), (2.2)

where Gω is the amplitude of the oscillatory force and τ is the period.
The motion of a droplet in a capillary tube is conveniently analysed in a reference

frame that moves with the drop. The speed of the reference frame uref is unknown a
priori and is determined by adding a constraint equation which specifies the droplet
position relative to the origin of the domain:

zfront + zback = 0, (2.3)

where zfront and zback are the z-coordinates of the droplet interface evaluated at the
centre of the tube. For unsteady problems, this leads to an accelerating reference
frame, whose influence is manifested as a body force acting in the negative z-direction
with magnitude ρ(∂uref/∂t). This quantity is subtracted from the prescribed body
force b(t) to yield the total force b′(t):

b′(t) = b(t)− ρ∂uref
∂t

. (2.4)

Given a reference frame with the drop fixed at the origin, the r-coordinates of
the grid points on the boundary wall become functions of time. To update the wall
positions, we integrate the frame velocity uref to obtain the axial displacement relative
to the droplet:

zt =

∫ t

0

uref dt. (2.5)

3. Non-dimensional parameters
In analysing the motion of droplets in constricted tubes, our goal is to determine the

flow rate as a function of the tube geometry, forcing conditions, and fluid properties.
In this section we introduce the non-dimensional parameters used to characterize
these quantities. The geometry is defined by the gap size h, the wall amplitude α, the
tube wavelength L, and the drop radius a. These quantities lead to three independent
non-dimensional parameters: the pore size h/α, the drop size a/h, and the wall slope
αk.

Having specified the geometry, we turn our attention to the characterization of
the pressure gradient and the acoustic stimulation. The constant body force Go
representing the mean pressure gradient and the oscillatory body force Gω representing
the acoustic stimulation are non-dimensionalized with the gap size and surface tension
yielding dimensionless parameters

Fo = Goh
2/γ, (3.1)

Fω = Gωh
2/γ. (3.2)

An equivalent measure of the strength of the oscillatory forcing is the root-mean-
square amplitude, which for sinusoidal forcing is

Frms = Fω/
√

2. (3.3)

The final forcing parameter is the dimensionless frequency based on the period of the
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forcing τ and the viscous response time of the droplet µa/γ,

f =
µa

γτ
, (3.4)

where µ is the viscosity of the suspending fluid phase. Later in this paper we will
discuss the relevant time scales in this problem and show that in certain instances
alternative scalings for the frequency prove useful.

The remaining parameters necessary to specify the problem are the fluid properties.
As in part 1, the properties of the droplet are defined relative to those of the bulk
fluid via the viscosity ratio λ and density ratio ρD . The final physical parameter is the
material property number

Re/Ca =
ργh

µ2
. (3.5)

The geometry, forcing, and fluid properties are sufficient to determine both the
droplet velocity Udrop and the bulk fluid velocity U. The bulk velocity is calculated
by averaging over the cross-sectional area at the narrowest part of the tube, hence

U =
1

πh2

∫ h

0

u · n 2πr dr. (3.6)

Note that different choices for the axial position of the averaging cross-section would
lead to smaller values for U. The bulk fluid velocity is non-dimensionalized by defining
the capillary number

Ca = µU/γ. (3.7)

For flow in constricted tubes, both the bulk fluid velocity and the droplet velocity are
functions of time; therefore mean quantities are useful:

Ū = lim
t2→∞

1

t2 − t1
∫ t2

t1

U(t) dt, (3.8)

Ūdrop = lim
t2→∞

1

t2 − t1
∫ t2

t1

Udrop(t) dt. (3.9)

The mean bulk velocity is non-dimensionalized via the mean capillary number

Ca = µŪ/γ. (3.10)

For constant forcing, an alternative measure of the mean velocity is the dimensionless
permeability

κ =
Ūµ

Goh2
. (3.11)

For flows with both a mean and an oscillatory forcing component, we find it con-
venient to scale the mean flow rate Ū with the bulk fluid velocity U1 for single-phase
flow at the same mean forcing level Fo. Also, we find the relative droplet velocity
Ūdrop/Ū to be a useful measure of the droplet velocity.

For many multiphase flows, one is interested in the ratio of the volumetric flow
rate of the drop phase to the total flow rate. The flow rate of droplets is Qdrop =
4
3
πa3Ūdrop/L, while the total flow rate is Q = πh2Ū. Thus, the ratio of the volume
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(a) Mesh M1

(b) Mesh M3

(c) Mesh M4

Figure 2. Drop profiles for three different meshes. The conditions are drop size a/h = 2, property
number Re/Ca = 0, viscosity ratio λ = 1, density ratio ρD = 1, and forcing level Fo = 0.18.

Number of
Mesh elements Bulk Droplet

M1 104 0.067763 0.013220
M2 136 0.066267 0.012944
M3 424 0.066133 0.012921
M4 808 0.066130 0.012921

Table 1. Effect of mesh refinement on the bulk fluid flow rate and the drop flow rate for four
different meshes. Columns show dimensionless velocities µŪ/γ and µŪdrop/γ respectively.

flow rates is related to the relative droplet velocity by a simple expression:

Qdrop

Q
=

4a3

3Lh2

Ūdrop

Ū
. (3.12)

In reservoir models, one is often interested in the relative permeability of the two
fluid phases. The relative permeability (drop phase versus bulk) for our simple system
is exactly equal to the ratio of volume flow rates given here. Thus the relative
permeability is directly proportional to the relative drop velocity.
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Figure 3. Drop velocity as a function of position for four different levels of grid refinement. The
dotted line represents mesh M1, the solid lines represent meshes M2–M4. Conditions are drop size
a/h = 2, property number Re/Ca = 0, viscosity ratio λ = 1, density ratio ρD = 1, and forcing level
Fo = 0.18.

4. Numerical methods
The governing equations and boundary conditions are solved with the Galerkin

finite element method. Details of our implementation of this method are described
in Part 1 and in Graham (1999). In this section, our goal is to verify the accuracy
of this method for droplet flow in constricted tubes. In figure 2, we present drop
profiles for three different levels of mesh refinement, and we observe that the profiles
are very similar for each mesh. Furthermore, as shown in table 1, the mean bulk
flow rate and the mean droplet velocity vary by less than 0.25% between meshes M2
and M4. As a final accuracy test, figure 3 shows the instantaneous drop velocity as
a function of position along the tube. Meshes M2–M4 are denoted by solid lines
and show nearly identical behaviour, while only the coarsest mesh M1 (dotted line)
deviates significantly. Given the similarity between meshes M2–M4 in the calculated
drop shapes, mean flow rates, and droplet velocity as a function of position, mesh
M3 will be used for the majority of the calculations presented here. We note that
mesh M2 is probably sufficient for accuracy purposes, but we have found that using
a slightly higher level of mesh refinement allows the resolution of a wider range of
droplet shapes without excessive mesh distortion or grid point overlap.

5. Results for constant forcing level
Our primary goal in this paper is to determine the effect of oscillatory forcing

on the droplet motion and the bulk flow rate in constricted capillary tubes. Before
addressing this problem, we must first characterize the behaviour of these flows subject
to a constant pressure gradient or body force. These results will provide a basis from
which to evaluate the effects of oscillatory forcing.

For droplet motion at arbitrary capillary number, the drop shape and velocity
will depend upon the drop response as it passes through a number of successive
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Fo = 0.03 Fo = 0.09

Figure 4. Drop profiles for different positions along the tube for two different forcing levels.
Conditions are property number Re/Ca = 0, drop size a/h = 2, viscosity ratio λ = 1, and density
ratio ρD = 1.

constrictions in the capillary tube. Both the drop velocity and the bulk velocity
will be functions of the droplet deformation history. Neither quantity is necessarily a
periodic function of time or position, despite the periodicity of the capillary geometry.
In the present section, we shall restrict our attention to droplets with small capillary
numbers for which the response time of the droplet is small compared with the time
scale for convective motion. The viscous and inertial response times of the droplet
are µa/γ and

√
ρa3/γ respectively, while the convective time scale is L/U. Taking the

ratio of these scales, we require(
Ca

a

L

)
� 1 and

(
Re/Ca

)1/2

(
Ca

a

L

)
� 1. (5.1)

(The Reynolds number based on the ratio of time scales is ρUa/µ however a/h ≈ 1.)
Under these conditions, the droplet shape, droplet velocity and bulk velocity are
uniquely determined by the instantaneous droplet position and the forcing level in
the capillary. All quantities are periodic functions of position and time. In § 6 below,
we shall see that this simplification proves extremely useful in the development of a
quasi-steady theory for analysis of oscillatory forcing.

In the remainder of this section, we first determine the effects of forcing level
on the drop profiles, the instantaneous flow rates and the permeability. We then
determine the permeability for a wide range of drop sizes, material property numbers
and viscosity ratios. The results presented in this paper will be limited to a capillary
with αk = 1 and h/α = 0.4; however, results for other tube geometries are given in
Graham (1999).

5.1. Forcing level effects

We begin our presentation by examining the effects of forcing level on droplet flow in
constricted tubes. Figure 4 shows drop profiles at different positions along the tube
for two different forcing levels. For the lowest forcing level, the force is insufficient to
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Figure 5. Drop velocity as a function of position for different forcing levels. Conditions are
property number Re/Ca = 0, drop size a/h = 2, viscosity ratio λ = 1, and density ratio ρD = 1.
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Figure 6. Bulk flow rate as a function of position for different forcing levels. Conditions are
Re/Ca = 0, drop size a/h = 2, viscosity ratio λ = 1, and density ratio ρD = 1.

push the drop through the narrow part of the constriction and pore plugging occurs.
For the higher forcing level, the force is strong enough to overcome surface tension
forces and the drop passes through the constriction. The effects of forcing level on
the instantaneous droplet velocity are shown in figure 5. At the lowest forcing level
(Fo = 0.03) the drop velocity approaches zero near position L/3 as pore plugging
occurs. At higher forcing levels no plugging occurs, and the drop velocity increases
as it moves from the wide part of the tube and approaches the constriction. Owing
to mass conservation, the local fluid velocity increases as the tube narrows, which
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Figure 7. Permeability as function of force for property number Re/Ca = 0, drop size a/h = 2,
viscosity ratio λ = 1, and density ratio ρD = 1.

increases the droplet velocity. The droplet slows slightly as it enters the narrowest
part of the tube, with the increased resistance arising from the energy required for
droplet deformation. Upon exiting the narrowest region, the drop expands, releasing
surface energy which propels the drop out of the constriction and increases its
velocity.

Turning our attention to the bulk flow rate (figure 6), we observe that it approaches
zero for the lowest forcing level Fo = 0.03 owing to pore plugging. For higher forcing
levels, the bulk flow rate decreases sharply as the drop enters the constriction, but
then increases dramatically as the drop exits the constriction. This is a reflection of
the same phenomenon seen for the droplet velocity. As a droplet enters a constriction,
the deformation of the interface leads to large storage of interfacial energy. When the
droplet leaves the constriction, the release of this energy pushes the droplet forward
yielding the rapid acceleration seen in the figure. At the end of this stage, the droplet
assumes a nearly constant shape, and the bulk flow rate changes little as the drops
transits the expanded portion of the capillary.

Given that the bulk flow rate and droplet velocity vary with position and time for
these flows, the relevant measures of the overall flow rate are the mean bulk flow rate
Ū and the mean droplet velocity Ūdrop. These quantities are conveniently characterized
by the permeability κ and the relative droplet velocity Ūdrop/Ū. Figure 7 shows the
permeability as a function of forcing level. For low forcing levels, the permeability
is nearly zero owing to pore plugging. As the forcing level passes the critical value
for droplet flow Fplug , the permeability increases sharply. Further increases in the
forcing level lead to a relatively constant permeability that approaches the level for
single-phase flow (dotted line). This indicates that the droplet has a small effect on
the permeability for forcing levels higher than roughly twice the value Fplug . The mean

capillary number for these flows is given by the relationship Ca = κFo. The capillary
numbers for the forcing levels in figure 7 range from 0 to 0.25, with a value of order
Ca ≈ 0.04 at the plugging threshold.

Figure 8 shows the relative droplet velocity as a function of forcing level. Its
small value (≈ 0.2) reflects the fact that the bulk fluid velocity is defined at the
narrowest portion of the tube. The relative droplet velocity is essentially constant with
respect to forcing level, and therefore the following discussion will focus primarily
on the bulk flow rate. Detailed results for the droplet velocity are given in Graham
(1999).
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Figure 8. Relative droplet velocity as function of force for property number Re/Ca = 0, drop size
a/h = 2, viscosity ratio λ = 1, and density ratio ρD = 1.

Figure 9. Drop profiles for two different size droplets; the dotted line is a/h = 2 and Fo = 0.09,
and the solid line is a/h = 1.1 and Fo = 0.0125. Other conditions are Re/Ca = 0, λ = 1, density
ratio ρD = 1.
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Figure 10. Permeability as function of force for two different drop sizes. Conditions are property
number Re/Ca = 0, viscosity ratio λ = 1, and density ratio ρD = 1.

5.2. Drop size effects

The next parameter considered is drop size. In figure 9 we compare the drop profiles
at the narrow portion of the tube for two different drop sizes. For the smaller drop size
a/h = 1.1, significantly less deformation is required for the droplet to pass through the
constriction compared with drops of size a/h = 2. Figure 10 shows the permeability as
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Figure 11. Drop profiles for two different material property numbers; the dotted lines are Re/Ca = 0
and the solid lines are Re/Ca = 500. The conditions are drop size a/h = 2, viscosity ratio λ = 1,
density ratio ρD = 1, and Fo = 0.09.

Figure 12. Streamline patterns for flow at (a) Re/Ca = 0 and (b) Re/Ca = 500. Conditions are
drop size a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, and Fo = 0.09.

a function of forcing level for both drop sizes. While the plugging threshold is much
lower for a/h = 1.1 than for a/h = 2, both curves exhibit similar shapes with a region
of negligible permeability rising quickly to a region of relatively constant permeability
as the forcing level increases. In each case, there is little effect on permeability for
forcing levels above two times Fplug .

5.3. Inertial effects

While the previous sections have been restricted to purely viscous flow, in this section
we consider flows for which inertial effects are present. The parameter that measures
the relative importance of inertial effects is the material property number Re/Ca. In
figure 11, we compare typical drop profiles for Re/Ca = 0 to those for Re/Ca = 500
for a droplet at successive locations within the tube. The profiles in this figure
correspond to the droplet positions illustrated previously in figure 4. For the droplet
which has exited the constriction (profile at far right), the rear of the drop with
Re/Ca = 500 is flatter than that for Re/Ca = 0. This flatter shape arises as the
droplet exits the constriction. The rear of the droplet moves faster than the front,
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Figure 13. Permeability as function of force for different property numbers. Conditions are drop
size a/h = 2, viscosity ratio λ = 1, and density ratio ρD = 1.

and its high velocity is sustained by the fluid inertia. While the droplet profiles show
relatively subtle changes in shape, the streamline patterns in figure 12 show marked
contrast for the two property numbers. For the Re/Ca = 0 case, the streamlines
contract in the narrow part of the tube and expand in the wider section similar to
those for single-phase flow at low Reynolds number. For the Re/Ca = 500 case,
a concentrated jet of fluid forms in the centre of the capillary with recirculating
vortices in the expanded regions of the channel. The instantaneous Reynolds number
(Re = ρUh/µ) for this flow is 20.3. Flow patterns of this type are common for
single-phase flows in constricted channels at comparable Reynolds number (Graham
1997).

Turning our attention from the drop profiles and streamline patterns to the effects
of inertia on permeability, we plot the permeability as a function of forcing level for
three different values of Re/Ca in figure 13. As the property number Re/Ca increases
from 0 to 500, the plugging threshold Fplug decreases slightly. In a purely viscous flow,
the droplet becomes plugged when the pressure force is balanced by strong surface
tension forces. For inertial flows, however, the droplet tends to remain in motion even
when these two forces balance, and this extra inertia provides the impetus needed
to pass through the constriction. Inertial effects are also apparent in the dependence
of the permeability on forcing level for relatively high forcing (Fo > Fplug). Here, for
both Re/Ca = 100 and Re/Ca = 500, the permeability decreases as the forcing level
increases. An analogous trend is observed for single-phase flow: the permeability is
constant for Re = 0, while it decreases for finite Reynolds number flows due to inertial
drag. In figure 14, we show the relative droplet velocity as a function of forcing level
for each material property number. The relative droplet velocity is nearly constant
for Re/Ca = 0, while it increases with forcing level for larger material property
numbers. This dramatic increase is due to the jet of fluid that forms in the centre
of the channel for inertial flows. At high Re, the concentrated jet carries the droplet
through the expanded portion of the capillary at velocities approaching the level of
the bulk velocity in the constriction.

5.4. Viscosity ratio effects

Effects of viscosity ratios other than λ = 1 are considered in detail in Graham (1999).
The plugging threshold is not a strong function of viscosity ratio, but the permeability
for higher forcing level was found to decrease with increases in viscosity ratio.
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Figure 14. Relative droplet velocity as function of force for different property numbers.
Conditions are drop size a/h = 2, viscosity ratio λ = 1, and density ratio ρD = 1.

6. Quasi-steady analysis
In this section, we develop a quasi-steady model to predict the system response to

oscillatory forcing based on data from simulations with constant forcing levels. The
quasi-steady model has much lower computational cost compared with full unsteady
simulations, and it gives effective predictions for the flow behaviour over a wide range
of conditions.

For droplet flow in constricted tubes with oscillatory forcing, there are five distinct
time scales: the viscous and inertial response times of the droplet µa/γ and

√
ρa3/γ,

the viscous diffusion time ρh2/µ, the period of the oscillatory forcing τ and the
convective time scale for the periodic geometry L/U1. The first four time scales have
been encountered previously in Part 1. As in that study, the first requirement for a
quasi-steady model is that the droplet response times and viscous diffusion time be
much smaller than the period τ. As before, this leads to the constraints

f � 1, f
√
Re/Ca� 1, f(Re/Ca)� 1. (6.1)

In addition to these constraints, an efficient quasi-steady model requires that the
velocity can be specified as a unique function of position and instantaneous forcing
level, independent of deformation history. In the previous section we found that
this condition is satisfied if the response time of the droplet is small relative to the
convective time scale, which requires(

Ca
a

L

)
� 1 and

(
Re/Ca

)1/2

(
Ca

a

L

)
� 1. (6.2)

When these conditions are satisfied, the results of the constant-forcing simulations of
§ 5 may be employed to give quasi-steady predictions of the bulk flow rate and drop
velocity in the presence of oscillatory forcing. The instantaneous velocity is given by

U(t) = Uo(z(t);F) |F=F(t), (6.3)

in which U(t) and Uo represent either the bulk fluid velocity or the droplet velocity,
and Uo(z(t);F) is the velocity at position z(t) for given constant forcing level F . The
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mean flow is computed as

Ū = lim
t2→∞

1

t2 − t1
∫ t2

t1

Uo(z(t);F(t)) dt. (6.4)

The final parameter which affects the quasi-steady analysis is the ratio of the
convective time scale to the oscillatory period. We shall call the ratio L/U1τ the
periodic frequency. For periodic frequency L/U1τ � 1, the oscillatory forcing shows
negligible change as the droplet passes through many constrictions. For periodic
frequency L/U1τ � 1, the droplet experiences many cycles of oscillatory forcing
with negligible change in mean axial position. The quasi-steady prediction (6.4) is
valid for arbitrary periodic frequency, because it specifically incorporates the position
dependence in computing the velocity. In general, the integration in (6.4) requires
integration over many oscillatory forcing cycles, because the disparate time scales in
the spatial dependence z(t) and temporal dependence F(t) yield a velocity which is
not periodic in time. In the limit of small periodic frequency however, the integral
may be computed in simpler fashion. In this case, the droplet travels through many
constrictions at a given forcing level, and we infer that the relationship between
U(t) and F(t) is identical to that between Ū and Fo for simulations with a constant
force. Thus we may average Ū(Fo) over all forcing levels in one cycle to obtain the
quasi-steady prediction of the mean flow rate.

The data for quasi-steady predictions require a series of simulations at different
constant forcing levels. For each forcing level, we compute and tabulate the drop
velocity and the bulk fluid velocity as a function of drop position along the tube.
To predict the velocity at an arbitrary position and forcing level, we perform two
interpolations. First, we interpolate to find the velocity at the current droplet position
for each constant forcing level. Next, we interpolate these data with respect to the
forcing level to find the velocity at the appropriate position and instantaneous forcing
level. With this procedure, we may then integrate (6.4) over many periods to evaluate
the mean velocities.

7. Quasi-steady results
In this section, we present results for the quasi-steady analysis of oscillatory forcing.

We first examine low periodic frequencies to determine the mean flow rate and the
mean droplet velocity for a wide range of forcing conditions, geometric parameters
and fluid properties. For a given set of parameters, we then explore periodic frequency
effects in an effort to determine the range of frequencies for which these trends hold.

7.1. Oscillatory forcing level

We begin by considering the effects of forcing level on the mean flow rate. Figure 15
shows the mean flow rate as a function of oscillatory forcing level. For this plot, the
periodic frequency is small (L/U1τ → 0) and the specified mean force is below the
threshold required to push the droplet through the constrictions (Fo < Fplug). For low
levels of oscillatory forcing, the flow rate is very small due to pore plugging. As the
oscillatory forcing level increases, we reach a point at which the instantaneous force
is strong enough to drive the droplet through the constriction. Once this threshold
is reached, the flow rate increases dramatically. Further increases in the forcing level
cause the mean flow rate to decrease slightly before levelling off. The shape of this
plot can be understood in the context of figure 16, which shows an idealized version
of the mean velocity as a function of constant forcing level. In regions 1 and 4 the
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Figure 15. Quasi-steady analysis showing mean flow rate vs. oscillatory forcing where the steady
forcing is below plugging threshold. Conditions are property number Re/Ca = 0, drop size a/h = 2,
viscosity ratio λ = 1, density ratio ρD = 1, Fo = 0.03, and L/U1τ→ 0.

V
el

oc
it

y

Force

4

3

2

1

Figure 16. Schematic representation of force vs. velocity for constricted tube.

permeability is constant (velocity vs. force is linear), and in regions 2 and 3 plugging
occurs. For the quasi-steady results shown in figure 15, the steady component of the
force is in region 2 (plugging), and the sharp increase in mean flow rate occurs when
the positive portion of the oscillatory forcing cycle samples region 1 (linear) and
the negative portion samples region 3 (plugging). As the oscillatory forcing becomes
stronger, the negative portion of the forcing cycle samples region 4 (linear) and the
mean flow rate decreases. For strong oscillatory forcing, the mean bulk velocity is
comparable to the flow rate for a single-phase fluid at the same forcing level Fo. This
indicates that the addition of the oscillatory forcing to a plugging capillary flow not
only mobilizes the droplets but also reduces the droplet resistance enough to generate
a significant mean flow rate.

Moving from systems with a mean force below the plugging threshold to systems
with a mean force greater than Fplug , figure 17 shows the mean flow rate as a function
of oscillatory forcing for conditions where Fo is about 50% larger than Fplug . For
low oscillatory forcing levels, we observe a decrease in mean flow rate, which can be
understood in the context of figure 16. The steady component of the force is in the
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Figure 17. Quasi-steady analysis showing mean flow rate vs. oscillatory forcing where the steady
forcing is above the plugging threshold. Conditions are property number Re/Ca = 0, drop size
a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, Fo = 0.09, and L/U1τ→ 0.

linear region of the plot (region 1). As a small oscillatory force is added, the positive
portion of the forcing cycle samples the linear region (region 1), whereas the negative
portion of the cycle moves the net force into the plugging region 2. The pore plugging
during this interval yields a smaller flow rate than that for constant permeability
and decreases the mean flow rate. For stronger oscillatory forcing, there is a slight
increase in the mean flow rate. For this case, a portion of the negative forcing interval
samples region 3 (plugging) yielding negligible reverse flow, and the mean flow rate
is higher as a result. While oscillatory forcing has some effect on the mean flow rates
for Fo > Fplug , the change is small compared to systems where Fo < Fplug; for the rest
of this paper we will focus on systems with Fo < Fplug .

7.2. Drop size effects

Having shown that oscillatory forcing can enhance the mean flow rate for a droplet
of given size, we now consider the effect of varying the drop size. Figure 18 shows the
mean flow rate as a function of oscillatory forcing level for two different drop sizes.
For the smaller drops, a lower force is required to generate a mean flow, consistent
with the results for the plugging threshold discussed previously (§ 5.2). Despite the
difference in threshold values, the mean flow rate is very similar for the two drop
sizes at oscillatory forcing levels proportionately above the respective values of Fplug .
For droplets smaller than those considered here (e.g. a/h < 1), very little deformation
occurs, and oscillatory forcing has only a slight effect on the mean flow rate.

7.3. Inertial effects

In this subsection, we evaluate the effects of fluid inertia on the enhancement in
mean flow rate. Figure 19 shows the mean bulk velocity as a function of oscillatory
forcing level for two values of Re/Ca. The primary difference between the curves for
the two property numbers is the decrease in bulk flow rate at high forcing levels for
Re/Ca = 500. This decrease arises due to the nonlinear inertial drag and is to be
expected based on the constant-forcing results shown in figure 13. In figure 20, we
show the results for the droplet velocity. In contrast to the bulk fluid flow rate, the
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Figure 18. Quasi-steady analysis showing mean flow rate vs. oscillatory forcing for different drop
sizes and where the steady forcing is below the plugging threshold. Conditions are property number
Re/Ca = 0, viscosity ratio λ = 1, density ratio ρD = 1, and L/U1τ → 0. The steady force for
both drop sizes is about half of the plugging threshold; Fo = 0.03 for a/h = 2 and Fo = 0.003 for
a/h = 1.1.
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Figure 19. Quasi-steady analysis showing mean flow rate vs. oscillatory forcing for different levels
of Re/Ca and where the steady forcing is below the plugging threshold. Conditions are drop size
a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, Fo = 0.03, L/U1τ→ 0.

mean droplet velocity increases monotonically with increasing forcing level, even for
large Frms. This trend is expected based on the constant-forcing results which show
the formation of a concentrated jet of fluid in the centre of the channel. A distinctive
feature of inertial flows is that the oscillatory force can act both to overcome pore
plugging and to increase the relative droplet velocity. In contrast, for more viscous
flows the oscillatory forcing serves to overcome pore plugging, but has little effect on
the relative droplet velocity.
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Figure 20. Quasi-steady analysis showing relative droplet velocity vs. oscillatory forcing for different
levels of Re/Ca and where the steady forcing is below the plugging threshold. Conditions are drop
size a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, Fo = 0.03, L/U1τ→ 0.

1.5

1.0

0.5

0

–0.5
0 5 10 15

L
U1s

U1

U

Figure 21. Quasi-steady analysis showing mean flow rate vs. frequency of forcing for a case where
steady forcing is below plugging threshold. Conditions are property number Re/Ca = 0, drop size
a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, Fo = 0.03, and Frms = 0.15.

7.4. Viscosity ratio effects

Quasi-steady results for three different viscosity ratios are presented in Graham
(1999). The effects of viscosity ratio on quasi-steady analysis are similar to those for
constant forcing.

7.5. Periodic frequency effects

The final parameter we consider is the periodic frequency L/U1τ. Recall that quasi-
steady analysis can be employed to capture periodic frequency effects for conditions
where the droplet response and viscous diffusion time scales are small (equations
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(6.1), (6.2)). To investigate periodic frequency dependence, we select a typical set of
conditions with a mean forcing level Fo below the plugging threshold Fplug and an
oscillatory forcing level Frms five times that of the mean force. The mean flow rate as a
function of periodic frequency is shown in figure 21. For frequencies up to L/U1τ ≈ 3,
the oscillatory forcing overcomes the plugging threshold and generates a significant
mean flow comparable to that achieved at the low-frequency limit. When the periodic
frequency L/U1τ ≈ 5, the mean flow rate decreases dramatically. For the lower
frequencies, the instantaneous forcing level remains above the plugging threshold for
a significant length of time and allows the droplet to flow through the constriction.
As the periodic frequency increases however, the time interval during a single cycle
is insufficient, and additional cycles are required to drive the droplet through the
constriction. At high enough frequency, the time intervals are too short and the
droplet remains immobilized on the upstream side of the constriction. Although
the droplet is immobilized, the oscillatory forcing still has an interesting effect on the
bulk flow rate. During the positive portion of the forcing cycle, the droplet is pushed
firmly against the constriction, leaving a very small gap and negligible forward flow
rate. During the negative portion of the cycle, the droplet is pushed away from the
constriction, producing a larger gap and allowing significant flow in the negative
direction. In effect, the immobilized droplet acts as a one-way flow valve for the
oscillatory driving force. The net result is that a significant mean flow is generated in
the direction opposite to that of the mean driving force.

Having shown that significant positive flow enhancement occurs for frequencies
below a certain critical value, we now focus on how this critical frequency varies with
oscillatory forcing level. We define the critical frequency by the condition that a droplet
moves freely through constrictions for subcritical frequencies, but is immobilized
for frequencies above the critical value. In computing this critical frequency, our
numerical criterion for an immobilized droplet is that the mean droplet velocity
remains below 2% of the low-frequency asymptotic value for 10 cycles of oscillatory
forcing. Alternatively, if the droplet passes the midpoint of the constriction at 0.5L,
we assume that it is mobilized. Using these criteria, calculations were repeated at
different frequencies until the critical frequency was bracketed with an uncertainty
of 2%. Figure 22 shows the computed values for the critical frequency as a function
of the oscillatory forcing level. As the forcing level increases, the critical frequency
increases in a nearly linear fashion with a levelling trend at the upper end near
L/U1τ ≈ 5.

To understand the behaviour seen in figure 22, we must examine the mechanism by
which the oscillatory forcing remobilizes the droplet. A droplet which is trapped on
the upstream side of the constriction must be displaced from its original position to
a point just past the midpoint of the constriction. This distance is a function of the
surface tension and the capillary geometry but scales linearly with the length scale
L. For oscillatory forcing levels significantly above Fplug , the instantaneous droplet
velocity is nearly proportional to Fω even in the narrow constriction. The amplitude
of the oscillatory displacement thus scales as Fωτ. Equating this displacement with the
distance required for remobilization yields a linear scaling for the critical frequency
L/U1τ ∼ Fω which is consistent with the results shown in figure 22.

The simple analysis above assumes that the drop will be remobilized if the oscillatory
displacement carries it past the midpoint of the constriction. This assumption is valid
if the mean forcing level Fo is sufficient to prevent the drop from reversing its course
during the negative portion of the forcing cycle. As the oscillatory force pushes
the drop through the constriction, the mean force adds an additional displacement
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Figure 22. Critical frequency vs. oscillatory forcing level. Conditions are property number
Re/Ca = 0, drop size a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, and Fo = 0.03.

proportional to Foτ. This extra displacement must exceed a certain fraction of L to
prevent the reverse passage through the constriction. Owing to this constraint, the
critical frequency levels off as shown in figure 22.

8. Unsteady simulations
The quasi-steady analysis has shown that large increases in the mean bulk flow

rate and in the mean drop velocity are possible when oscillatory forcing is utilized.
We have seen that the increase in flow rate is most pronounced when the steady
driving force is below the pore-plugging threshold. Quasi-steady analysis predicts
that a critical periodic frequency exists, above which oscillatory forcing is incapable
of driving a droplet through a constriction. In this section we conduct full unsteady
flow simulations with oscillatory forcing and compare the results with quasi-steady
predictions. In the following, we will restrict ourselves to flows with Re/Ca = 0, and
therefore the time scale for viscous diffusion ρh2/µ and the inertial response time of

the droplet
√
ρa3/γ are negligible.

In figure 23(a), we show the droplet position as a function of time for an unsteady
simulation at low frequency f = 0.00637 (L/U1τ = 2.21) and compare with results
based on quasi-steady analysis. The results show excellent agreement with only a slight
variation as the droplet passes through each constriction. This figure illustrates a case
where the periodic frequency is low enough for the oscillatory forcing to drive the drop
through the constriction. The behaviour at higher frequencies is shown in figure 23(b),
where we show the droplet positions for f = 0.00127 (L/U1τ = 4.43) as computed by
unsteady simulations and by quasi-steady calculations.The agreement in this plot is
excellent, demonstrating that quasi-steady analysis provides a good prediction of the
unsteady forcing behaviour for frequencies above the critical frequency for droplet
mobilization.

Finally, in figure 24, we show the critical frequency as a function of forcing
level with results from quasi-steady analysis and from the full unsteady simulations.
Again, there is good agreement, with the quasi-steady predictions deviating from
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Figure 23. Comparison of droplet position vs. time at frequency (a) L/U1τ = 2.21 and (b) for a
quasi-steady analysis and an unsteady simulation. Conditions are property number Re/Ca = 0,
drop size a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, Fo = 0.03, and Fω = 0.12. Time is
non-dimensionalized with the period of forcing τ.

the unsteady simulations only at the highest forcing level. With strong oscillatory
forcing, the frequency f enters the range where the response time of the droplet is
no longer fast enough for a quasi-steady analysis. We observe that the full unsteady
simulation actually yields a higher critical frequency than the quasi-steady prediction.
For frequencies just below the critical frequency, the droplet experiences an extra
impulse as it pops through the constriction in the forward direction, but misses
this extra push during the incomplete transit in the reverse direction. The unsteady
simulation accurately resolves this directional bias, while the quasi-steady analysis
fails to capture the phenomenon. Owing to this omission, the quasi-steady analysis
gives a slight underprediction for the critical frequency in the high-frequency range.

The results presented in this section show that quasi-steady analysis can be
employed to capture many features of unsteady, oscillatory flow. For the low Reynolds
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Figure 24. Critical frequency vs. oscillatory forcing level. Conditions are property number
Re/Ca = 0, drop size a/h = 2, viscosity ratio λ = 1, density ratio ρD = 1, and Fo = 0.03.
The error bars show the uncertainty in the critical frequency for the unsteady simulations.

number, low capillary number flows considered here, there is excellent agreement be-
tween the quasi-steady predictions and the unsteady simulations. For nearly all forcing
levels considered, the quasi-steady analysis gives accurate predictions for the droplet
motion over the relevant range of periodic frequency. The critical periodic frequency
is predicted well by quasi-steady analysis. For frequencies above the critical value, os-
cillatory forcing is ineffective for remobilizing droplets, and the unsteady simulations
required for this regime are of little interest. On a final note, we observe that unsteady
simulations are likely to be more important for inertial flows at higher Reynolds
numbers, or for higher capillary number flows where the drop response time is slower
than the convective or oscillatory time scales.

9. Conclusions
We have analysed droplet flow through constricted tubes over a wide range of

conditions for both constant and oscillatory forcing. For constant forcing, we have
presented detailed computations of the drop shape, bulk flow rate and drop velocity
and have determined the conditions for which droplets exhibit pore plugging. The
critical force required to overcome pore plugging is found to be a strong function of
the drop size a/h, while the dependence on fluid inertia Re/Ca and viscosity ratio λ
is weaker. Our analysis of oscillatory forcing has shown that pore plugging plays an
integral role in determining the mean flow rate. For systems with a relatively small
mean force, a dramatic increase in mean flow rate occurs as the oscillatory forcing
becomes strong enough to overcome the plugging threshold. Further increases in the
oscillatory forcing level lead to small increases in mean flow rates.

The phenomena studied in this paper may be relevant to enhanced oil recovery
operations which have demonstrated increased efficiency in the presence of acoustic
stimulation. Owing to the predominance of surface tension forces in petroleum
reservoirs, pore plugging is a common occurrence leading to trapped oil droplets
and a reduction in the overall permeability of the medium. Our results show that
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acoustic stimulation may be an effective means to remobilize some of these droplets,
thereby increasing the oil recovery rate and enhancing the permeability of the media.
The results in this paper may be applicable to other flows involving porous media
in industrial operations. Examples include filtration, flow in packed beds and the
manufacture of fibrous composites. In addition to these engineering applications,
enhanced transport subject to oscillatory forcing may be important in the movement
of blood cells through small blood vessels with constrictions. A cell which would
plug the vessel under a weak steady pressure force may be remobilized with the large
oscillatory forcing supplied by the circulatory system.
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